

MudHunter: Internet-Scale DNS Cache Snooping for Cyber Threat Intelligence

Bassel Succar¹
bsucca1@lsu.edu

Joseph Khoury¹
Joseph.khoury@lsu.edu

Antonia Affinito² a.affinito@utwente.nl

Elias Bou-Harb¹ ebouharb@lsu.edu

- ¹Louisiana State University, LA, USA
- ²University of Twente, Enschede, NL

UNIVERSITY OF TWENTE.

Introduction

Effective defense begins with visibility — and visibility requires continuous measurement.

Motivation

- DNS is the Internet's backbone processes trillions of lookups daily.
- Over 60% of traffic flows through a few public resolvers (Google, Cloudflare, Quad9, OpenDNS).
- Resolvers resolve both benign and malicious activity:
 - Command-and-control (C2) operations
 - Phishing sites
 - DNS tunneling and data exfiltration

Google Public DNS

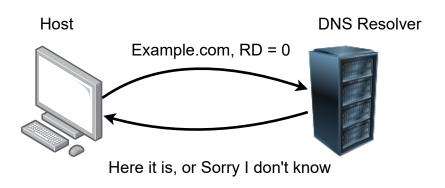
Motivation

• DNS is the Internet's backbone - processes trillions of lookups daily.

Insight: Public DNS resolvers are a gold mine for Cyber Threat Intelligence.

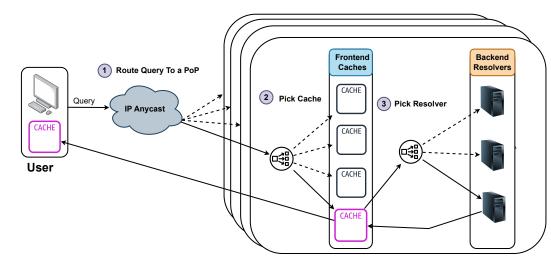
- · communa-una-control (C2)
 operations
- Phishing sites
- DNS tunneling and data exfiltration

LSU


Limitations of Current approaches

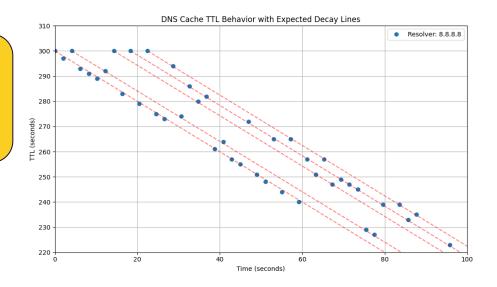
- Passive DNS: valuable, but incomplete and delayed (multi-hour lag).
- Sinkholes: offer direct visibility but works for domains you can register, take over, or that someone else (e.g., an ISP) agrees to redirect.
- DNS logging or telemetry: rarely available at Internet scale due to privacy and jurisdictional constraints.
- Result: no scalable, privacy-preserving way to estimate domain activity across resolvers.

- **V** DNS Cache Snooping A Promising Alternative ●●
- Uses non-recursive queries (RD=0) to check if a domain is cached → evidence of recent lookups.
- Requires no cooperation from resolvers or domain owners.
- Privacy-preserving: no user data, only aggregate cache state.
- Enables real-time, globalscale estimation of domain activity across networks.


What is Cache Snooping?

- DNS uses caching to reduce latency and offload authoritative servers. Each record includes a Timeto-Live (TTL), the time (in seconds) a resolver can reuse the cached answer.
- During this TTL window, the resolver serves the cached result instead of re-querying upstream servers.
- A non-recursive query (RD = 0) only returns answers already in cache or an empty response if not cached.

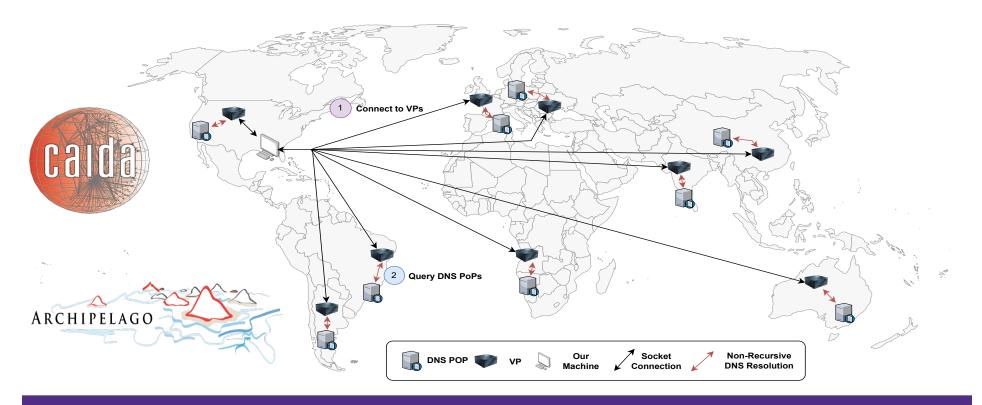
A deeper look into Public DNS Caching architecture


- Public DNS Points of Presence
 (PoP) are distributed to handle the
 big load of traffic they receive.
- Each PoP has 2 layers: front-end caches and back-end resolvers, with load balancers in between.
- Due to local caching, one user can fill one cache for the duration of the TTL of the domain.

Public DNS PoPs

Domain Activity Estimation Through Cache Snooping

By sending non-recursive (RD=0) queries repeatedly to the same PoP and observing TTL Values, we can estimate how many independent caches hold a domain giving a lower bound on how many users queried it.


Building on TruffleHunter

TruffleHunter (IMC 2020) first proved that DNS cache snooping could estimate global domain activity, but required manual, per-node deployments that limited real-world use.

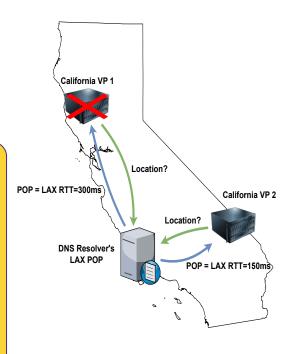
MudHunter removes this barrier automating Internet-scale measurements and turning cache data into real-time, geographically resolved threat intelligence.

Link to TruffleHunter Paper: https://dl.acm.org/doi/10.1145/3419394.3423640

Methodology

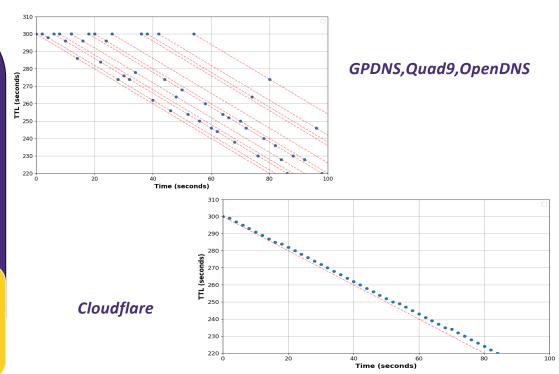
Measurement Phases

PoP Discovery & mapping

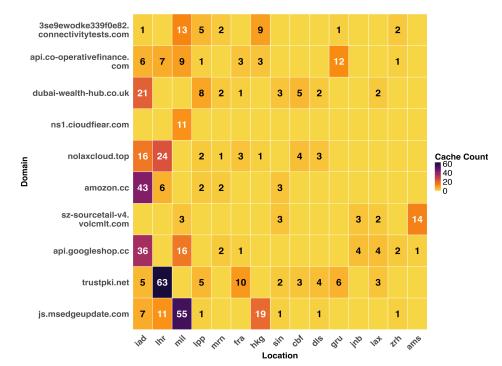

- Different resolvers expose PoP info differently:
- •Google → oo.myaddr.l.google.com
- Cloudflare / Quad9→ CHAOS TXT id.server
- •OpenDNS → TXT debug.opendns.com
- Aggregated into a global VP-to-PoP map (using IATA airport codes).
- Refreshed periodically to track routing changes.

Vantage Point Filtering

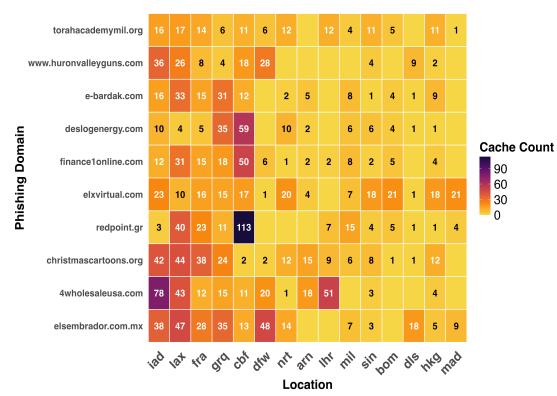
- •Multiple VPs may route to the same PoP → redundant measurements.
- For each PoP, select one VP with the lowest RTT (fastest path).
- Avoids double-counting TTL lines and unnecessary probe traffic.


Parallel Cache Probing

- Selected VPs send 50 non-recursive (RD=0) queries to four resolvers: Google, Cloudflare, Quad9, OpenDNS.
- •Each query round records TTL values → aggregated by {resolver, PoP}.
- •Insert 2s delay between rounds to respect rate limits.


Cache Filling Experiment

- Registered our own domain with TTL = 300s to observe resolver behavior in isolation.
- Sent recursive (RD=1) queries every 2 s from each vantage point × 50 rounds.
- TTL = 300 → authoritative; TTL < 300 → cached response.
- Tracked TTL decay to visualize cache filling patterns per resolver.
 - GPDNS, Quad9 and OpenDNS operates using independent caching.
 - Cloudflare Operates using unified Caching.


Mapping Botnet C2 Infrastructure

- Botnets depend on DNS to locate and control C2 servers.
- MudHunter probed 1,247 verified C2 domains (Apr 3-10 2025) every 6 hours via the 4 major resolvers.
- Used cache-based heatmaps to reveal regional C2 activity.
- Found concentrated hotspots, not uniform global spread → evidence of regionally targeted botnet operations.

Tracking Banking Phishing Domains

- Phishing domains are short-lived (often hours) and use homographs, subdomain abuse, and typosquatting to evade detection.
- MudHunter probed 892 verified banking phishing domains (Apr 3-10 2025) every 6 hours via the 4 major resolvers.
- Activity shows localized, short-term campaigns, not global spread, consistent with targeted phishing operations.

Vantage point filtering Effectiveness

- ≈ 60.8 % (± 1.4 %) of VPs filtered daily →
 ~79 / 130 VPs removed
- Each removed VP would have sent 200 probes (k = 50 × 4 resolvers)
- Optimization saves ≈ 15.7 K DNS probes per domain (range 15.4 K–16.4 K)

Day	% VP Removed	Probes Saved
1	61.54	16,000
2	63.08	16,400
3	59.23	15,400
4	59.23	15,400
5	60.77	15,800
6	60.77	15,800
7	60.00	15,600

Limitations Of Cache Snooping

- Load Balancers non-determinism: Probes hit different FE/BE → false misses, undercount.
- Resolver policy variance for RD=0: REFUSED / SERVFAIL → blind spots.
- Geo sparsity: Limited VP coverage.
- TTL churn & eviction: Races between user hits and probes skew results.
- VPNs/proxies can skew geo inference: cache hits may reflect shared VPN/proxy
 infrastructure rather than unique local users, concentrating activity at certain PoPs and
 blurring true location.

Conclusion

- Our experiments confirmed that cache snooping remains viable across today's major public resolvers, offering renewed visibility into domain activity.
- By coordinating 130 vantage points worldwide, it transforms cache snooping from a research trick into a reproducible measurement system.
- Through this lens, resolver caches become signals, quietly reflecting where malicious infrastructure is active without touching user data.
- Ultimately, MudHunter lowers the barrier for global active DNS intelligence, empowering defenders and researchers to measure, not guess, where threats emerge.

Thank you